The Evolution of Genetic Code in Genetic Programming
نویسندگان
چکیده
In most Genetic Programming (GP) approaches, the space of genotypes, that is the search space, is identical to the space of phenotypes, that is the solution space. Developmental approaches, like Developmental Genetic Programming (DGP), distinguish between genotypes and phenotypes and use a genotypephenotype mapping prior to fitness evaluation of a phenotype. To perform this mapping, DGP uses a problem-specific manually designed genetic code, that is a mapping from genotype components to phenotype components. The employed genetic code is critical for the performance of the underlying search process. Here, the evolution of genetic code is introduced as a novel approach for enhancing the search process. It is hypothesized that code evolution improves the performance of developmental approaches by enabling them to beneficially adapt the fitness landscape during search. As the first step of investigation, this article empirically shows the operativeness of code evolution.
منابع مشابه
A Genetic Programming-based Scheme for Solving Fuzzy Differential Equations
This paper deals with a new approach for solving fuzzy differential equations based on genetic programming. This method produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Furthermore, the numerical results reveal the potential of the proposed appr...
متن کاملA Method for Solving Optimal Control Problems Using Genetic Programming
This paper deals with a novel method for solving optimal control problems based on genetic programming. This approach produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Using numerical examples, we will demonstrate how to use the results.
متن کاملEvolution and modeling in sustainable supply chain management research
Numerous researchers and practitioners are attracted to sustainability in supply chains (SCS) and it has become one of the favorite topics among academics and industries. The purpose of this paper is to review and analyze the research studies that have been published in the field of sustainable supply chain management (SSCM). A total 242 articles published between 2000 and 2019 reviewed. Conten...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملBankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach
In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...
متن کاملBedload transport predictions based on field measurement data by combination of artificial neural network and genetic programming
Bedload transport is an essential component of river dynamics and estimation of its rate is important to many aspects of river management. In this study, measured bedload by Helley- Smith sampler was used to estimate the bedload transport of Kurau River in Malaysia. An artificial neural network, genetic programming and a combination of genetic programming and a neural network were used to estim...
متن کامل